Bending and shear force confusion….

Advert

Bending and shear force confusion….

Home Forums Beginners questions Bending and shear force confusion….

Viewing 25 posts - 1 through 25 (of 39 total)
  • Author
    Posts
  • #455439
    Robin Graham
    Participant
      @robingraham42208

      Rather than trying to trying to frame my question in abstract terms, I'll give you the case in point.

      I've got involved with making stuff for a charity. On of the projects involves modifying a fruit press:

      vigopress.jpg

      The latest requirement is to lengthen the arms to get more torque and hence more pressure on the 'fruitcake' to squeeze the maximum amount of juice out.

      OK, slip some pipe over the handles. Eventually though the 'arms' will bend, assuming nothing else gives way first.

      So to arrive at my question. If I made something like this:

      presshandlemodsmall.jpg

      would it be stronger than the simple 'bar through a hole in the boss on the screw'? I have a gut feeling that it would be because if the parts fit closely, the pin experiences shear rather than bending force. Gut one in my ruminations tells me that it's harder to shear steel than to bend it, but gut two says I'm getting something for nothing* so than can't be right and I'm not thinking about this in the right way.

      Apologies for my roundabout approach to the question – if I had to vocabulary to express it more succinctly I'd probably know the answer.

      Robin.

      * First law of Thermodynamics – you can't win, you can only break even.

      Second Law – you can only break even at absolute zero.

      Third Law – you can't get to absolute zero.

      Advert
      #10103
      Robin Graham
      Participant
        @robingraham42208
        #455442
        Michael Gilligan
        Participant
          @michaelgilligan61133
          Posted by Robin Graham on 04/03/2020 23:16:56:

          .

           

          presshandlemodsmall.jpg

           

          .

          My first thought is that your new handles have significant stress-raisers where they enter [exit from ?] the boss … it may be worth making the boss a fancier shape, to spread the load.

          MichaelG.

          .

          This sort of idea : https://www.enfieldelectrical.co.uk/products/die-stock-and-die-set-20mm-25mm

          [ being the first suitable picture I found ]

          Edited By Michael Gilligan on 05/03/2020 00:09:02

          #455451
          Mick B1
          Participant
            @mickb1

            Where you say 'close fit on boss', do you really mean 'on pressing screw shank'?

            My initial instinct would be to project the 'top-knob' above the top of the screw shank, so you could have a through-hole for both drive-pin (lower, through shank) and double-ended turning handle (higher, avoiding shank), but I dunno if there are faults with that.

            #455454
            JasonB
            Moderator
              @jasonb

              Can't help thinking that the top yoke casting will fail at one of the ends long before any steel handle, expect its remelted scrap iron and not SG Iron.

              #455459
              Clive Hartland
              Participant
                @clivehartland94829

                OK, re-think the whole idea. Some years back i made a press, nice square thread and found that it did not need massive pressure on the pulp. In fact the initial pressure was enough to start the juice flow which then slowed, at this point more partial turning started it again.

                If you have a massive turning pressure you will burst the bag with the pulp in it, huge mess to follow.

                Actually forcing the pulp does not help it at all. What it needs is a gentle pressure because if forced the juice will be cloudy with particles which means more work later to clear.

                The length of handles is not critical, just enough leverage to start the flow and to add a bit later.

                Mine was for apple juice which was quite nice. I have a wide variety of apples and mixed cookers and eaters.

                #455464
                not done it yet
                Participant
                  @notdoneityet

                  Yet another case of attempting to over-rate a machine – to use it at a much higher power level than it was designed for. Likely end in misery.

                  #455471
                  Michael Gilligan
                  Participant
                    @michaelgilligan61133

                    I’ve just looked again at Robin’s picture of the press, and browsed for similar

                    … In the cold light of day, it looks much smaller than I first thought.

                    Very happy to accept Clive’s wisdom regarding the forces.

                    MichaelG.

                    #455472
                    Clive Foster
                    Participant
                      @clivefoster55965

                      #2 on what Clive H says.

                      Not much pressure is needed. Sounds like your "fruitcake" is coming up solid far too quickly. I'd look at the preparation process before you put the stuff in. Really it should never come up fully solid. Internal cohesion should always be loose enough to allow some flow.

                      Maybe your operators are getting in too much of a hurry and trying to squeeze the juice out in one fell swoop. As Clive says the process is squeeze a bit, let the juice flow out, when it stops squeeze a bit more. Repeat until done. Those hand presses aren't fast.

                      (another) Clive

                      #455474
                      Nicholas Farr
                      Participant
                        @nicholasfarr14254

                        Hi Robin, if your getting to a point where the handles start to bend, then there's the chance that the thread will be overstrained and may fail long before the life of the machine, assuming it is a good make, I'd guess it is made to function fairly efficiently as is. I don't know much about pressing fruit, but I have seen things on TV about it and the process seems to be as Clive H has pointed out.

                        Regards Nick.

                        #455478
                        Nigel McBurney 1
                        Participant
                          @nigelmcburney1

                          I made 100 plus handles and screws for a similar arrangement ie assembly presses and made improvements over time. first change was to make the handle from stainless steel ,initially I used en 8 but this corroded due sweat from the operators hands plus any fruit juice, the handle length needs to take into account the physical strength of the operator,is it a repeat operation or just occasional.Two handles into blind holes will eventually work loose,as the hole depth is shown as approximately shaft diameter. Make the boss longer and use a single handle in a through hole,the boss can ideally be a light press fit onto the threaded spindle with a cross pin,the pin needs to be a reasonable diameter ie about 1/4 inch and tight fit ,use silver steel, or if you have the tooling a taper pin is better,never never use roll pins,they come loose. the long top handle should be drive fit in the boss ie with a soft hammer. Now the one thing that surprised me was that I also secured the handle with a flat miled on the shaft in the centre and then locked with an hex skt grub screw, and the handles never came loose,the flat did give the grub screw a good seat and the screws had the ring type end and not a point which always seem to come loose. If used a lot those plastic handles on the end of the handle will work loose and be forever be coming off ,I have a Meddings drill with this type of handle end,and when I bought it s/hand three of the handle plastic ends were missing and another one loose,so I made turned aluminium handles secured with grub screws. The real way to pee off an operator is to have handles & knobs that are forever coming loose and falling off and have handles that make your hands sore ,dont knurl handles, years ago I found that assembly operators will cover any knurling with masking tape.

                          #455559
                          DrDave
                          Participant
                            @drdave

                            Robin,

                            Coincidentally, I have been looking at a very similar problem at work today. The difference is that the contact pressure between the "bar and the boss" is nearly 6 times higher if you have two bars in the boss, rather than a single bar passing straight through. This causes failure in the boss if two bars are used. The bars have similar strengths for either case.

                            Dave

                            #456009
                            Robin Graham
                            Participant
                              @robingraham42208

                              Thanks for replies. Interesting as always, but no one has addressed my question directly – quite possibly because it was a daft one.

                              I'll try to express my confusion in another way. Scenario A. You have an infinitely hard and rigid boss cross drilled to diameter D. You bung a bar through the hole – the bar is idealised only to the extent that it also has diameter D, so a perfect fit. Otherwise normal metal. You put torsional forces on the bar and eventually it fails in the sense that it it becomes permanently deformed into some sort of S shape.

                              Scenario B. You make something like the sketch in my original post. Everything fits perfectly, and the only thing that can fail is the pin which also has diameter D. The pin is subjected to pure shear force in this scenario. I think! In this case 'failure' is any sort of plastic deformation of the pin.

                              Is there anything to choose between the two scenarios? I now think not, but still not sure!

                              Thanks for the practical advice about apple presses – I shall pass that info on.

                              DrDave – sounds interesting but I can't understand the relationship between what you're working on and my problem from your brief description. I'd be interested to hear more – it sounds like it might have been a surprising result.

                              Robin.

                              #456019
                              Michael Gilligan
                              Participant
                                @michaelgilligan61133
                                Posted by Robin Graham on 08/03/2020 00:58:44:

                                […]

                                I'll try to express my confusion in another way. Scenario A. You have an infinitely hard and rigid boss cross drilled to diameter D. You bung a bar through the hole – the bar is idealised only to the extent that it also has diameter D, so a perfect fit. Otherwise normal metal. You put torsional forces on the bar and eventually it fails in the sense that it it becomes permanently deformed into some sort of S shape.

                                Scenario B. You make something like the sketch in my original post. Everything fits perfectly, and the only thing that can fail is the pin which also has diameter D. The pin is subjected to pure shear force in this scenario. I think! In this case 'failure' is any sort of plastic deformation of the pin.

                                Is there anything to choose between the two scenarios? I now think not, but still not sure!

                                […]

                                .

                                So far, so hypothetically good, Robin … except to note that that if ‘everything fits perfectly’ then the load on the pin is indistinguishable from the general internal loads … The nearest practical implementation probably being to secure all those elements with something like Loctite 638 retainer.

                                If, however, your boss is actually a ’bearing fit’ on the shaft … yes, your pin will be in double shear.

                                Given suitable choice of size and material for the pin: It is likely that either of these is simply transfer the problem area up to your new handle-fixings [which is where I came in], or [as Jason wisely noted] to the support structure.

                                MichaelG.

                                #456187
                                Perko7
                                Participant
                                  @perko7

                                  If I am understanding this correctly, the original has a full length bar of the same diameter as the pin in Scenario B, but the bar bends where it enters the boss. If that is the case then replacement of the bar with the pin and separate handles will achieve greater pressure, provided that the handles have greater resistance to bending than the original bar. In the original, if the bar is a loose fit in the boss, the bar is subject to both bending and shear, with the resistance to bending being much less than the shear strength. If the pin in Scenario B is a press fit, then it will only be subject to shear stress. Theoretically you will get greater pressure in the press, until you either exceed the shear strength of the pin or the bending strength of the separate handles, or the tensile strength of the boss where the handles are pressed into it.

                                  As others have said, be careful that your improved design in one part does not overtax other parts not designed for the additional forces you are now able to generate.

                                  #456189
                                  Steviegtr
                                  Participant
                                    @steviegtr

                                    Drill a bigger hole & stick a bigger bar through. Job done.

                                    Steve.

                                    #456221
                                    Martin Kyte
                                    Participant
                                      @martinkyte99762

                                      It's not really in shear is it?

                                      To my way of thinking if the entire thing was solid the end of the handle where it enters the boss is in tension at the top and comprssion at the bottom and it's this couple that has to resist the force on the end of the handle. The failure would be a tear starting in the tensioned part of the handle where it enters the boss.

                                      Clive Heartland has pointed out the primary problem which is a kind of hydraulic lock when you try and exceed the maximum rate at which the juice will escape. There is no point in trying to overcome this you will just break something.

                                      regards Martin

                                      #456224
                                      Michael Gilligan
                                      Participant
                                        @michaelgilligan61133
                                        Posted by Martin Kyte on 09/03/2020 09:40:20:

                                        It's not really in shear is it?

                                        […]

                                        .

                                        Not sure if that’s a response to my post, or a general observation, Martin

                                        If the former … May I, for the avoidance of doubt, repeat what I wrote:
                                        .

                                        [quote] If, however, your boss is actually a ’bearing fit’ on the shaft … yes, your pin will be in double shear. [/quote]

                                        .

                                        MichaelG.

                                        #456384
                                        Robin Graham
                                        Participant
                                          @robingraham42208

                                          Thanks for further replies.

                                          Perko7 – you have correctly understood my question. There was an implicit assumption that the new 'handles' would be more rigid than the originals in my framing of the question, but perhaps I should have been explicit. Thank you for your answer.

                                          MichaelG – I think you said the same thing , but I didn't understand what you meant by 'bearing fit'. Presumably the same thing as Perko7's 'press fit'? Thanks for your response.

                                          Thanks also to others for general advice about the design and operation of the press, which will be digested and passed on.

                                          I was actually sceptical about the proposed modifications to the machine for the same sort of reasons that have been put forward here – something else will break. What happened was that in thinking about it I realised that I didn't understand the relationship between bending and shearing – hence the title of this thread. I think I might be getting nearer some sort of explanation in my own mind though.

                                          Robin

                                          #456387
                                          Michael Gilligan
                                          Participant
                                            @michaelgilligan61133
                                            Posted by Robin Graham on 09/03/2020 23:11:14:

                                            […]

                                            MichaelG – I think you said the same thing , but I didn't understand what you meant by 'bearing fit'. Presumably the same thing as Perko7's 'press fit'? Thanks for your response.

                                            .

                                            Not quite, Robin … ‘bearing fit’ [relating to the fit of your new boss onto the feed-screw] was meant to describe something which slides together, as distinct interim between ‘loose’ and ‘press fit’ [i.e. the fit you would expect to find in a plain bearing] : This is the circumstance in which the pin could most reasonably be considered as being loaded exclusively in shear.

                                            … It matters not.

                                            MichaelG.

                                            .

                                            Edit: for clarity … your sketch uses the term ‘close fit’

                                            Edited By Michael Gilligan on 09/03/2020 23:32:28

                                            #456409
                                            Nicholas Farr
                                            Participant
                                              @nicholasfarr14254

                                              Hi Robin, shear stress, or shear strain is when something has two opposite and parallel sliding forces acting upon an item, like a pair of scissors or a guillotine. Your pin will have shear stress on it, but your handles won't.

                                              shear stress001.jpg

                                              The double shear mentioned, will be the same forces on the other side, but in the opposite direction. Your pin will only have bending forces on it if it is a loose or sloppy fit, but they will be small and limited by the clearance in the holes.

                                              Regards Nick.

                                              Edited By Nicholas Farr on 10/03/2020 08:49:12

                                              #456417
                                              Michael Gilligan
                                              Participant
                                                @michaelgilligan61133

                                                Succinctly put, Nick yes

                                                MichaelG.

                                                #456418
                                                Nicholas Farr
                                                Participant
                                                  @nicholasfarr14254

                                                  Hi Michael, thanks, I included the little sketch at the last moment, in case anyone couldn't understand the parallelism on the curved surfaces.

                                                  Regards Nick.

                                                  #456536
                                                  DrDave
                                                  Participant
                                                    @drdave

                                                    There does appear to be some confusion about shear forces and bending moments… To clarify my earlier post, I have drawn up a pair of sketches of a bar passing through the centre boss and a similar arrangement with two stub pins. They show the shear force and bending moment diagrams for the bar and for the pins. As I said before, the peak bending moment in the through bar is very nearly the same as that for the pins (for the same force, P).

                                                    The real difference is in the pressure applied to the boss. For the through bar, this is roughly uniform at a level of, say, w1. For the pins, however, the moment is transferred by very high pressures between the pin and boss. The triangular pressure distribution required to react the moment at the end of the pin gives a peak pressure (w1 + w2) of about 6 times higher than w1. This commonly leads to a bearing failure in the boss.

                                                    There is the alternative load path for the pin-in-socket, as shown by Micheal G. I think that I have only had to use a "Desperate Dan" analysis like that once in over thirty years of doing stress analysis of aerospace structures! The pin-in-socket, below, is the standard method.

                                                    Regards

                                                    Dave

                                                    through bar.jpg

                                                    pin in socket.jpg

                                                    #456544
                                                    Michael Gilligan
                                                    Participant
                                                      @michaelgilligan61133
                                                      Posted by DrDave on 10/03/2020 21:48:05:

                                                      There does appear to be some confusion about shear forces and bending moments…
                                                      […]

                                                      There is the alternative load path for the pin-in-socket, as shown by Micheal G. I think that I have only had to use a "Desperate Dan" analysis like that once in over thirty years of doing stress analysis of aerospace structures!

                                                      […]

                                                      .

                                                      Sorry, Dave … I’m a little bewildered now

                                                      Aside from one hyperlink, the only thing that I have ‘shown’ is Robin’s original sketch.

                                                      The rest of my input has been ‘thought experiment’ verbiage.

                                                      MichaelG.

                                                    Viewing 25 posts - 1 through 25 (of 39 total)
                                                    • Please log in to reply to this topic. Registering is free and easy using the links on the menu at the top of this page.

                                                    Advert

                                                    Latest Replies

                                                    Home Forums Beginners questions Topics

                                                    Viewing 25 topics - 1 through 25 (of 25 total)
                                                    Viewing 25 topics - 1 through 25 (of 25 total)

                                                    View full reply list.

                                                    Advert

                                                    Newsletter Sign-up