Before reading on, it may help to know that ‘Energy’, ‘Force’, ‘Work’ and ‘Power’ have technical definitions that aren’t the same as ordinary English. And ‘mass’ and ‘weight’ aren’t quite the same thing. Look them up if confused!
The relationship is this:
- a certain amount of energy is needed to provide a force. Many forces – reaction, thrust, magnetic, spring, tension, upthrust etc, but they’re all defined the same way. Force is whatever is required to accelerate a 1kg mass by 1meter per second per second. It’s measured in Newtons.
- Work is defined as the energy needed to move a mass a certain distance. Measured in Joules, where a Joule is 1Newton.metre. Note the absence of time in the definition of work. There is no concept of acceleration or how quickly the work must be done.
- Power introduces time. It’s the rate of doing work. Power is measured in Watts, and 1 watt is one Joule per Second. Calculating the power needed in Watts allows the motor to be selected.
- If needed, the calorific value of fuels is known in Joules, so the designer can calculate how big the fuel tank has to be. Or battery. He can also balance performance vs efficiency, and work out the best that can be done within a budget.
These steps and relationships provide the answer.
Looking at a car engine and gearbox might help and it illustrates some practical problems.
- The car engine has a certain power output, say 50000 watts, ideally at 2500rpm. Lower than 800rpm will probably stall it, whilst red-lining soon destroys the engine. Electric motors also have restrictions, and sometimes it’s important to choose carefully. Hold that thought for later!
- A car has mass (loosely weight). Ignoring friction, moving a 1000kg car 1000 metres takes 1000000 Joules. Mass and distance provide a toe-hold on work.
- From Joules we can calculate the size of engine needed to accelerate the car in Watts. Acceleration is rate of work: whilst a modest 50kW engine in a family saloon might take 15 seconds do 0-70mph, a 400kW engine might achieve under 4 seconds. Cruising is mostly about overcoming friction, and requires less power than starting, accelerating or hill-climbing.
- Movement is achieved by the engine spinning the road wheels, but because motors are imperfect a gearbox is needed to match the motor to the amount of work involved and how quickly that work has to be done. Work defined in Joules, not English:
- To get the car moving from a standing start, especially on a hill, a low gear is needed. The engine spins fast, transferring enough force to turn the road-wheels slowly, overcoming stiction and inertia. Rule of thumb, the Watts needed to do this may be enough for everything else, unless we are a racer.
- Once the car is moving, the car can gear up to go faster. Top gear (4th), normally 1:1, covers from about 25 to 40mph. Below 25mph, the engine needs a lower gear. For cruising above 40mph, it pays to have an overdrive gear (5th). Lower gears are needed to climb hills because the engine has to lift the car’s mass vertically, more work. Steep hills are climbed slowly in low gear with the engine at high rpm. To accelerate faster whilst overtaking a driver might go down a gear to spin the engine faster. A heavy lorry has more gears than a car because the mass is much larger, and more control is needed to avoid stalling and to minimise fuel consumption.
- Real designs have to allow for friction, which wastes a lot of energy. After applying the formula, it’s necessary to add a fudge factor based on practical experience.
- The same maths works for trains, planes, ships, garage doors, rockets, lifts, and anything else where a mass is moved by a force. Hint, the calculations are easier in metric than Imperial. Though the physics is identical, Imperial complicates the sums!
So, how heavy is the object being moved by the actuator, how fast must it accelerate, how fast must it move once started, and over what distance? Is the mass lifted or moved along the flat?
Fingers crossed, I think I’ve identified all the inputs. If not someone will point out the mistakes!
For completeness, possible to solve the problem experimentally, ideally based on relevant previous experience. Someone who has done this before is gold-dust. And it’s a quick way of confirming simple designs, or helping a learner muddle through! Otherwise, experiment works, but can’t achieve the same efficiencies as a calculated design, doesn’t scale-up, or deal with innovations. Very costly when a complex design has to evolve from scratch, because that can break the bank! After a certain level, it’s much cheaper to debug on paper or in a computer than to build a long series of prototypes.
Dave