By continuing to use this site, you agree to our use of cookies. Find out more

Member postings for martyn nutland

Here is a list of all the postings martyn nutland has made in our forums. Click on a thread name to jump to the thread.

Thread: Bronze bushing
26/10/2019 08:19:27

Many thanks everyone.

Yes...they were Oilite originally. I bought the Oilite replacements from the site Colin mentions of whom I am also a satisfied customer. But on this occasion the bushes were a mile too big. I baulked at making a tapered mandrel to hold them to try to turn them down largely because I'm not good with tapers. Hence I decided to make new ones.

Yes also...they were Imperial originally, but I always work in metric because I find it 100(!) times easier and logical.

Finally, the 'Oilite' bushes I got from the supplier had a lubrication hole halfway along! Struck me as a bit odd as there's no provision on the back plate for an oil/grease nipple and my understanding was Oilite bearings were permanently pre-lubricated?

Thanks again and a tres bonne weekend from la belle France!

Martyn

25/10/2019 15:11:25

Hello

I'm needing to make bronze bushing for the brake camshafts on my Austin Seven project. For those not familiar, the bush carries the stem of the shaft through the brake backplate from the brake actuating cam itself to the operating lever.

The bushing needs to be about 26mm long, 13-ish mm O/D for a push fit in the back plate with a bore of 11mm.

I've got the stock set up in the lathe with a 10.5mm drill in the tailstock drill chuck. (The plan is to reamer to 11mm when the axle is attached to the chassis).

However, the drill is making painfully slow headway and repeatedly snatching in the bore.

I think this is because I haven't 'backed-off' or blunted the lips on the drill (didn't want to spoil a drill!). Would that be the likely cause of the problem?

As always many thanks in advance for a view/advice.

Martyn

Thread: RENAULT DAUPHINE
04/08/2019 08:35:16

Remember them well, and a school mate who was very miffed if anyone raised the issue of instability.

Think it was a myth. As someone says, you had to accustom yourself to the characteristic of the car in those days, and the Dauphine layout was helping to break new ground, particularly in the UK.

Rust? Everything rusted to billy-o then, even R-Rs and cars like the Vauxhall Viva and Hillman Avengers were catastrophies.

Suspect the disparagers of the Dauphine may be displaying a touch of Europhobia....lot of it about.

Martyn in Paris

Thread: Automotive starter ring (ring gear)
04/08/2019 08:19:56

Very many thanks everyone. That helps.

Martyn

03/08/2019 11:33:31

Hello

I wonder if anyone could advise on this?

I have an Austin Seven flywheel from which I want to remove the ring gear. This is the early type where the teeth were milled(?) onto the solid. I.e. not the type where you heat a gear ring and shrink it onto the flywheel.

Most people would probably do this on the lathe and I have sufficient swing to do that. However I am worried such a heavy interrupted cut will bash the hell out of the lathe headstock.

I'm thinking a gentler approach would be to mount the flywheel on a rotary table and cut down just behind the teeth with an end mill or slot drill.

Is this a sound tactic?

Thanks in advance for any help. Martyn

PS Not an angle grinder please! They terrify me.

Thread: Tab Washers
07/04/2019 09:54:09

Thanks all.

Good advice and tips I shall employ.

Martyn

06/04/2019 12:41:58

Does anyone make tab washers in their workshop, and know an easy way to do so that's not like taking a steam hammer, the size of Big Geordie, to crack a very small walnut? I know your going to say: ' tab washers cost buttons, so why bother'. True; but my supplier makes them from far too hard a steel and when they are close behind a nut and tight against a ball race (my context) they are nigh on impossible to bend neatly without damaging the nut and/or bearing.

Soften them by heating. Yes? But to what colour and quench?

Or, could you do it like this? The Big Geordie and nut method! The principal difficulty as I see it is the internal tab. What if you took a piece of aluminium bar, turned to the desired outside diameter of the washer and bored to the inside diameter less the width of the tab. Now set up the workpiece on a rotary table and mill round with an endmill for, say, 350° of the bore - or any circumference that left the appropriate tab width. Could you now slice off as many washers as required, as thinly as practicable, with a slitting saw and grind them down to an appropriate, bendable thickness.

Thread: Milling that slot
04/03/2019 17:55:19

A few weeks ago forum correspondents were good enough to advise me on milling a slot in a round bar and I thought it would be an appreciative gesture if I let you know the denouement.

We explored a number of possible causes for difficulty. Unknown specification of the metal - I was using a surplus Austin Seven gearbox shaft; lack of centricity and/or rigidity of the workpiece, suitability of, and working procedures in using the slot drills I was 'hell-bent' on employing, and so on.
 
So, I threw away the bit of A7 gearbox and ordered virgin, free-machining steel from that most excellent supplier, R C Machines in Luxembourg. I took the precaution of buying both 15mm and 20mm diameter lengths as the finished part was barely 14mm in diameter and break out either side when machining was an issue, particularly if I let the tool deviate to one side or t'other.
 
To that end I trammed the vice to within 0.02/0.05 mm parallelism which, in spite of watching numerous 'how to You Tubes' from the great and the good, is about the best I can manage. I also decided to use about half the 300mm long bar although the finished part needed to be no more than 30mm long, the thinking being it would give me plenty of material to 'hold on to'.
 
To do so I set up twin precision ground V-blocks held as far apart as practicable in the vice jaws. I found the jaws would only grip one block. This could be because there is slop in the newish Vertex vice, although none is perceptible, or the identical V blocks (Chester) aren't in reality .
 
I have to confess to not taking the advice on centring, largely because I didn't really understand. I guess I could have touched on one side of the bar with an edge finder, done the math, touched from the other side, calculated again and divided, but given my level of competency and the back-lash on the Warco I stuck with my dangly inverted V gadget, that I do happen to like, in the mill spindle. But I did double check with the old machinists' trick of touching down with a centre drill on a steel rule placed across the circumference and eye-balling it for levelness.
 
I then drilled into the top of the bar at each end to seat the clamp of each V block and I overcame the fact that one was not gripped by the vice by building up with parallels a step block pressed across the end of the recalcitrant block. I also packed with spacers the gap in the vice jaws between the V-blocks.
 
I found I could get away with an 8mm wide (as opposed to 9mm) slot, so I amended the 'spec' accordingly. I felt the rigidity and centricity(?) I now had was the 'answer to a maiden's prayer' so applied the previous technique. Drill holes on the ends of the required length; cut through with an end mill and widen accordingly. M-I-S-T-A-K-E! Worse mess than before.
 
Thus I decided to 'bite the bullet' and experiment with a brand new 8mm slot drill. In a test slot on the material I found the slot drill would plunge 0.75mm static then
happily slot at that depth over a test length (12-ish mm -18/20 required). 'Perfick'!
 
Try it for real. Problem. Slot drill is pushing the bar along the V blocks. This problem was identified in the forum when I was holding with a collet block in the vice. Paper stuck to the ground surfaces was suggested. Because I didn't want to disturb the workpiece I didn't do that but instead pressed step blocks against both ends of it. Slot drill now plunges and advances with no problem and makes a perfect slot on the axis of the bar. I finished to diameter with an interrupted cut on the lathe. I ran the mill at 360 rpm and plunged the slot drill by 0.5mm increments.
 
Delighted with the result so thanks again.
 
Martyn N

--
Martyn Nutland
10 avenue de la Porte de Ménilmontant
75020 Paris
Thread: Cut a slot in round stock
03/02/2019 09:11:14

Thanks everybody, I think we can make progress here!

Rigidity, rigidity, rigidity is a good axiom I feel.

Maybe turn down the centre of the stock shy of diameter first. Clamp the collet block vertically certainly, but with a long piece of stock there's also the opportunity to hold the other end rigidly.

Not working to the finished diameter would strengthen the sides of the slot during the cutting process and once it was done an interrupted cut on the lathe would take it down to size before finally cutting off the part at each end.

Take the point about the material. That's the trouble with non-virginal material isn't it? You don't know the composition. I'll buy new steel.

I'll forget slot drills. Cut a flat with an end mill I think. Use twist drills at each extremity then gently take out the balance with end mills of increasing size.

I appreciated the drawing. That's not quite it. The bar, 27mm long at the finish remains intact at 14mm diameter. The slot - 9mm wide x 19mm long - goes through it. Thus you can't take out a complete portion as in the drawing but are leaving about 2.5mm on each side which is what makes it tricky. The slot needs to be straight, consistent and in the middle so as not to weaken one side or the other. Nice artwork though!

Thanks again everybody

Martyn

02/02/2019 08:36:39
Firstly, many, many thanks for all the comments and help.
 
For clarification, at the risk of being boring, what I'm trying to make is a pivot to sit between the forks of a vintage Austin Seven brake lever. The slot is necessary to accommodate a rod that links the brake pedal to the lever without putting any sideways load on the connection (rod).
 
To make the pivot I'm using a surplus Austin Seven gearbox mainshaft which is a nice bit of 'stuff' and because the gears would have been keyed to it, is not in itself hard. Its about eight inches long and 19 mm in diameter. and I turned it down to 14mm which is the only really critical dimension (hole in fork).
 
I am holding it in a collet block with an ER32 collet in a Vertex 4 inch vice on a Warco Economy mill. I have about 35 mm protruding out of the collet and for the later/heavier cuts I supported the overhanging end in a vee-block. Prior to that the collet block tended to tilt downwards.
 
Thus, I think overall rigidity is an issue.
 
I centred the spindle over the stock with one of those simple 'swinging vee' gadgets, scribed a line along the axis; centre drilled at both ends 4mm + 4.5 mm from the true end and from the intended cut off point (27 mm overall). Four millimetres because that's how much solid metal I want to insert on each side of the fork and 4.5mm because that is half the diameter of the width I want the slot. The rod is the diameter of a 5/16 BSF thread. (7.9mm)
 
I drilled on the centre drill indents at 6mm, 8 mm, 8.5 and 9 mm. When I now say mess I mean the 9 mm wandered off and chewed the sides where there's not much lee-way (as you point out) - 2.5mm. That's why I corrected with an 8 and 8.5 and why I think rigidity is an issue.
 
I tried to take out the remaining metal between the two holes with an 8mm slot drill and that was a mess too. In fact it wouldn't do it! Stalled the mill. Resorted to a file.
 
This is another bit I don't understand! I know that the difference between a slot drill and an end mill is that , because of the way the teeth on a slot drill are formed, they can 'plunge' whereas end mills' capacity to 'plunge' is minimal. Yet, my slot drills have a marked reluctance to 'plunge. Do you....drill a hole first, insert the slot drill part way - say for the sake of argument - to a depth of 2mm, then advance it the length of the slot - say 20 mm, come back, go down another 2mm and advance and so on until you are at depth or do you advance (plunge) the slot drill the full depth, as you might a conventional drill, then advance it along the slot cutting all the way in one go?
 
Good news is, the pivot piece, rough and unsatisfactory from a machining point of view though it is, works like a dream.
 
Thanks again.

--

31/01/2019 17:34:07

Can anyone advise me how to do this accurately? Fourth attempt coming up! I need a through slot 19mm X 9mm in 14 mm mild steel bar 27mm long.

Have tried a slot drill which just made a mess. Tried enlarging holes I thought to be accurately placed on the axis then cutting out the 'bridge' with a slot drill. Latter made a further mess and although I did get the slot I wanted by filing it was dangerously over to one side to the extent the part is unusable.

Guidance much appreciated, and many thanks, as always, in advance.

Thread: 1935 Austin Seven Ruby ARQ
09/05/2017 20:31:13

I know it's very 'bad form' to 'muscle in' on someone's thread with a topic that has absolutely nothing to do with the subject under discussion, so I'm not going to. Thus could Ol Baillie e-mail me on martynlnutland@gmail.com or martyn.nutland@gmail.com so I can ask him something about Austin Seven Rubies!

All the best. Martyn Nutland

Thread: Rotary Table Scales
20/03/2016 10:24:30

I wonder if someone who is familiar with rotary tables could explain to me how to read/operate the degree scales.

 
I have a 150mm diameter Vertex model. It has a 360° scale around the table and a randomly (I presume) placed pointer on the fixed base.
 
Working in from the hand wheel, there is a knurled ring that looks separate from the hand wheel but won't rotate without it. Integral with the knurled ring there is a scaled cylinder - rather like the markings on a lathe. But these are engraved 0 - then 15 divisions on - 30 - then another 15 division on - 1, and so on until you pass 3 and come back to zero after a full revolution of the hand wheel. Thus, I assume each of the 15 divisions between 0 and 30 represents two minutes and the 1 represents 60 minutes or one degree of table movement or four degrees per revolution of the hand wheel i.e. a ratio of 90:1 in terms of wheel to table revolutions.
 
After the aforementioned knurled ring and cylinder there's another stepped cylinder that turns independently of the outer one. This is engraved, at random as far as I can see, with a scale 60 0 60, with three divisions to the left of the zero and three to the right. I assume these are seconds of one minute of one degree. Protruding vertically from the after part of this cylinder is a short lever that engages or disengages the worm drive to the table so you can turn the latter by hand, if so wished, without turning the hand wheel. A thumb screw on the body of the machine locks the worm in engagement.
 
By way of example of my frustration: If I want a bolt circle of three, what I would do is twirl the hand wheel until the pointer on the fixed base registers with zero on the annular ring on the bottom of the table. Then, twirl again to 120, do the business, twirl another 120 (240 on the scale) and so on. But this strikes me as very unsophisticated and negates the point of all the gubbins behind the hand wheel. So, anybody, how do you set it up to do, for the sake of argument, a segment of 60° 12' 30"?
 
Thanks in advance for any guidance. Martyn
 
Thread: Edge Finder
15/03/2016 08:13:12

Nobody's writing anybody off. All I said was, there are not many books available that deal specifically with milling. And there aren't. Plenty on lathering.

As regards You Tube and videos, a bit of common sense will enable you to quickly identify the bozos.

For nearly an hour of first class, professional, instruction try Erik Vaaler 'Essential Milling Skills: Working With A Milling Machine Part One' and take it from there. Or refer to any of Tubal Cain's very many videos that involve milling.

Martyn

13/03/2016 17:01:04

I think Neil hits the rivet precisely on the head when he asks: 'what sort of project do you want to see in a book' - like Harold Hall's?

And the answer is, surely, none at all.

What a beginner wants to be told is how exactly the mill works, how to set it up and fit the tools, and above all, how to use it all safely. Little of which is contained in Hall's book.

If you understand the above, potentially, you can make anything from a T-nut to a precision boring head.

There are excellent videos on You Tube that show you precisely how to use a mill safely, what it can do and how you can set it up and maintain it to perfection. As usual most are American! But I would humbly suggest carefully selected You Tube 'films' are the way to go.

Martyn

13/03/2016 07:44:25

Didn't know about Throp. Will check that out. Thanks.

Martyn

12/03/2016 13:38:56

Agree with you totally Bob.

The projects you can either do without a book or else they are too difficult for a beginner.

The book had poor reviews but there is virtually nothing else available on milling. I use You Tube and find that route to know-how the best

The other two books you mention though are superb.

All the best.

Martyn

Thread: Cooling Fan Pedestal
15/02/2016 12:53:06

What I mean is, Ian, that the sort of modifications you made to your car, were 'in period'. They were not provided by the manufacturer but were available from somewhere like Halfords during the currency of the model, or, during what was considered to be it's reasonable or natural life expectancy. Thus, in the 30s one may have bought a gear lever extension for an Austin Seven, may have fitted 'helper springs' to the rear axle, purchased a bulb horn or even fitted an overhead valve cylinder head. In my view it is legitimate to present the car with those kind of enhancements - as you are doing - but, again in my view, it is not legitimate to be fitting to an Austin Seven pistons from some 1990s Japanese model of car or lawnmower, giving it a clutch from something similar Oriental or introducing carbon fibre components to its suspension. All these practices are relatively common, nothing to do with 'in period' modifications and hardly in the spirit of the hobby.

What I meant by 'this sort of thing' is, as I said in my original post - someone looking at my project car will immediately notice that the fan pedestal did not originate from either Birmal or the Austin Motor Company. They will suspect that some 'Joe' made it in his garden shed and, in the vast majority of cases, will not be impressed.On the other hand, I could have bought a new pedestal that would be indistinguishable from Longbridge's and look, although not be, original. And, as you say, the 'value' of the vehicle is influenced 'by this sort of thing' - by my pedestal and all the other little bits and pieces I have made - oil filler caps, petrol filler lids, control pedals, oilers etc etc. But then I don't want to sell the car!

Hope that helps clarify.

Martyn

15/02/2016 07:08:46

Hello Chris

You almost certainly take monetary value off the vehicle by doing this sort of thing rather than preserving 'originality' with a replica as-fitted-by-the-manufacturer part. And I do like to maintain the originality if I can, or at least, only modify in period - no 12V Volkswagen electrics on an Austin Seven, for example or Nyloc big end nuts. But I've never been very into 'what's it wurf'. 32m Euro for a Ferrari in Paris last week left me rather disgusted and not from envy! So, I've made lots of parts for my Austins and have really enjoyed the process.

Martyn

14/02/2016 16:15:50

img_1224.jpgHello All. This is never going to win any prizes at any engineering shows anywhere.

But, it is my interpretation of the Birmal fan pedestal that company made in the thousands for the magneto-fired Austin Seven. The point is, I made it with the advice and guidance of members of this forum, and it fits and works perfectly.

For the benefit of the armchair experts and 'tyre-kickers' I do know that you can now buy them for 12 quid, which is about a third of what it cost me to make mine (who cares?).

Yes, and I do know these would not have been machined at the works. They would have been Birmal castings costing ha'pennies!

Onwards and upwards,

Martyn

Edited By martyn nutland on 14/02/2016 16:17:10

Magazine Locator

Want the latest issue of Model Engineer or Model Engineers' Workshop? Use our magazine locator links to find your nearest stockist!

Find Model Engineer & Model Engineers' Workshop

Latest Forum Posts
Support Our Partners
Eccentric Engineering
Meridienne; London MES
Eccentric July 5 2018
ChesterUK
TRANSWAVE Converters
cowbells
Ausee.com.au
Warco
emcomachinetools
Allendale Electronics
Subscription Offer

Latest "For Sale" Ads
Latest "Wanted" Ads
Get In Touch!

Do you want to contact the Model Engineer and Model Engineers' Workshop team?

You can contact us by phone, mail or email about the magazines including becoming a contributor, submitting reader's letters or making queries about articles. You can also get in touch about this website, advertising or other general issues.

Click THIS LINK for full contact details.

For subscription issues please see THIS LINK.

Digital Back Issues

Social Media online

'Like' us on Facebook
Follow us on Facebook

Follow us on Twitter
 Twitter Logo

Pin us on Pinterest