This file has been downloaded free of charge from www.model-engineer.co.uk
This file is provided for personal use only, and therefore this file or its contents must NOT be used for commercial purposes, sold, or passed to a third party.

Copyright has been asserted by the respective parties.

RAGION ENGINES

dernal ombustion rorkshops

 oundry rork

The UNIMAT PC is the perfect machine for the modeller. More than 40 years ofexperience in industrial mechanical engineering have gone into this development. The result is a machine system refined down to the last detail with which you can implement your ideas with maximum precision.

Even the basic version comprises a lathe chuck and live centre, an electronic speed controller, 3 speed ranges as well as a gear quadrant for the most common threads.

The extremely quiet motor drives the machine through toothed belts. The machine can even be operated in your living room
owing to the integral chip tray and chip guard.

TECHNICAL DATA

Centre height. 54 mm Distance between centres 196 mm Swing over bed................ 110 mm Cross slide traversing path 68 mm Spindle nose M14x 1 , sim. to DIN 800 Spindle bore $\varnothing 10.2$ mm Speed range 20-2200 rpm Tailstock:
Sleeve strocke/sleeve Ø. . $28 \mathrm{~mm} / 18 \mathrm{~mm}$ Mains voltage 42 V DC Nominal current $2.6 A \pm 20 \%$ Motor rating continuous .. $95 \mathrm{~W} / 47 \mathrm{~W}$ Direction of rotation. cw/ccw

AN ADD ON PC DRIVE HARDWARE/SOFTWARE PACKAGE WITH CAD/CAM FACILITY IS AVAILABLE AS AN OPTIONAL EXTRA

Hobby and
High-Tech

CONTENTS

12 welcome.

To the World of Model engineering
15 MAKE AN I.C. ENGINE
Drawings and details to make this delightful diesel
THE WORLD OF CLOCKS
Basic clockmaking principles explained

A CRAMPTON LOCOMOTIVE

A top-class working model described

MAKE AN ATMOSPHERIC ENGINE

Drawings and details to build an unusual power unit

UNUSUAL STEAM

And now for something completely different!
Outstanding models from around the globe
[With grateful thanks to the staff of Model Engineer magazine for encouragement and support.]
'World of Model Engineering 4 is printed in Great Britain by Chase Web, Plymouth with mono and colour origination by Keyboard Komposition Ltd., of Strafford, London for the Proprietors and Publishers, Argus Specialist Publications, Argus House, Boundary Way Hemel Hempstead Hertfordshire HP2 7ST. Front cover origination by Derek Croxon of Chesham, Bucks Distribution by SM Distribution Ltd. All rights reserved; no part of this publication may be reproduced by any means without the prior consent of the Author and Publisher. © 1990 Argus Specialist Publications.

56

THE TRACTION ENGINE 'MINNIE'
A fine example of this popular design
BENDING AND ROLLING METAL
The tools and techniques

RANDOM HINTS AND TIPS

Tricks and short-cuts from a modelling lifetime

WORKSHOPS VISITED

Top modellers' tips and techniques

SUPPLIERS' LISTINGS

Over four pages of invaluable addresses and numbers
SMALL TOOLS
How they are made, what they do

PROOPS BROTHERS

GEARS
Geartech 1 (10 items)

Set includes

$1 \times 7.7 \mathrm{~mm}$ dia 10 tooth push fit -2 mm centre $1 \times 9 \mathrm{~mm}$ dia 14 tooth push fit -2 mm centre $1 \times 14 \mathrm{~mm}$ dia 20 tooth push fit -4 mm centre $1 \times 20 \mathrm{~mm}$ dia 30 tooth push fit -4 mm centre $1 \times 27 \mathrm{~mm}$ dia 40 tooth push fit -4 mm centre $1 \times 33 \mathrm{~mm}$ dia 50 tooth push fit -4 mm centre $1 \times 40 \mathrm{~mm}$ dia 60 tooth push fit -4 mm centre $1 \times 46 \mathrm{~mm}$ dia 70 tooth push fit -4 mm centre $2 \times 125 \mathrm{~mm}$ interlocking racks $£ 3.00 /$ set $+\mathrm{c} / \mathrm{p} 0.50$

PULLEYS
Pulleytech 1 (7 pulleys)

Set includes.
$1 \times 10 \mathrm{~mm}$ dia push fit -2 mm centre
$1 \times 12 \mathrm{~mm}$ dia push fit -2 mm centre
$1 \times 12 \mathrm{~mm}$ dia push fit -4 mm centre
$1 \times 15 \mathrm{~mm}$ dia push fit -4 mm centre
$1 \times 20 \mathrm{~mm}$ dia push fit -4 mm centre
$1 \times 25 \mathrm{~mm}$ dia push fit -4 mm centre
$1 \times 30 \mathrm{~mm}$ dia push fit -4 mm centre
$6 \times$ elastic bands
£1.95/set
$+\mathrm{c} / \mathrm{p} 0.50$

WHEELS
Polypropylene wheels in sets of 8

Wheeltech 1
25 mm dia -4 mm ho ${ }^{\circ}$ e £1.35/pack $+\mathrm{c} / \mathrm{p} 0.50$ 37.5 mm dia -4 mm hol £1.70/pack $+\mathrm{c} / \mathrm{p} 0.50$ Wheeltech 3
42.5 mm dia -4 mm hole £2.25/pack
$+\mathrm{c} / \mathrm{p} 0.50$
Wheeltech 4
50 mm dia -4 mm hole £2.75/pack
$+\mathrm{c} / \mathrm{p} 0.50$

HELPING HANDS

- ACRYLIC MAGNIFIER
- 6 ball joints for all angles
- NICKEL-PLATED FITTING
- heavy Cast-Iron base
- Alligator spring cuips
- LOCKS AT ANY ANGL

Retail Price $\ldots \ldots . \quad £ 4.95+£ 1.50 \mathrm{c} / \mathrm{p}$ With GLASS Magnifier .. $£ 5.95+£ 1.50$ c/p
No Magnifier $\ldots . . .{ }^{2} .95+£ 1.50 \mathrm{c} / \mathrm{p}$

PROOPS BROTHERS LTD

RETAIL AND MAIL ORDER

21 Masons Avenue Harrow
Middx HAЗ 5 AH
Tel: 01-861 5258
Fax: 01-861 5404
Tuesday - Saturday 9.30am - 5.30pm Closed Monday.

RETAIL ONLY
Technology House 34 Saddington Road Fleckney
Leics LE8 OAW
Open Friday \& Saturday Only 10.00am - 4.00pm Trade Enquiries Welcome.

MODEL ENGINEERING SUPPLIES AND SERVICES

JUST A FEW FROM THE RANGE OF PACKS BY MESAS

H. round $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 5 / 32^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}, 5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime} 1^{\prime \prime}$ 五 6.05
$5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}$
£7.70
J. Hex $2,4 \& 6$ BA $3 / 8$ and $1 / 2$
£4.70
Combined Packs, A, B and C $£ 8.80$ E, E and F $£ 15.40$ A, B, C, D, E and F $£ 23.10$ G, H and J $£ 16.50$ $£ 3$ postage up to maximum six packs.
All sizes quoted are supplied as 2 ft . lengths unless otherwise stated.

TUNGSTEN CARBIDE TIPPED TOOLS

BRITISH MADE BEST RANGE FOR

 MODEL ENGINEERS$\mathrm{K}-60^{\circ} \mathrm{J}-55^{\circ}$
Types, A, B, C, D, E, G, H, L \& M $£ 2.88$ each: Types F, J \& K $£ 4.31$ each Available in $1 / 4^{\prime \prime}, 5 / 16^{\prime \prime} \& 3 / 8^{\prime \prime}$ Square Shank. Set of 12 Tools $£ 36.00$. Set of any
 of $6 £ 25.00$; set of $12 £ 47.00$.
Trade enquiries welcome. Orders under $£ 15$ add $£ 1$ P+P.
SEND $£ 2.50$
FOR LATEST
CATALOGUE
160 PAGES

SHARP 4" $£ 105$
$6^{\prime \prime} £ 160$ ROTARY TABLE PRICES INCLUDE VAT + UK CARRIAGE
\star FERROUS + NON FERROUS METAL STOCKISTS \star CASTINGS BY STUART, SPINK, HEMINGWAY \star BOOKS, TECHNICAL LITERATURE + M.A.P. PLANS \star RIVETS, SCREWS, NUTS, 'O' RINGS \& PINS \star CASH \& CARRY DISCOUNTS AVAILABLE ON MACHINE TOOLS \star GEAR CUTTING SERVICE (Detailed Enquiries only).

STUART model kits
No 10 V or 10 H
SCORE
DCOMELE 10
STUAAT BEAM
STUAAT BEAM
HALL BEAM
HALF BEAM
JAMES COOMBES
VICTORIA
TWIN VICTORIA
${ }_{\text {THEAL Linc BOOK }}$
REAL inc BOOK)
WLLIAMSON (inc
STEAMPUMP

OIF Fill
STUMP

${ }^{54020}$

No $4-$ G104.94
STUART CAAAL

PRICE INCLUDES VAT \& POST

See us at Alexandra Palace Stand Nos. $85+86$ MODEL ENGINEERING SUPPLIES \& SERVICES LTD.
Mesas House, Alma Street, St. Helens, Lancs. WA9 3AR. Tel: (0744) 53634
Fax: 074424264 Hours Mon.-Sat. 9-5.15pm Late Night Wednesday 7.30. CHEQUES PAYABLE TO MESAS. Prices include VAT + UK Postage.

PAYABLE TO MESAS. Prices include VAT + UK Postage.
Provided order is over f 15 excepting materials.

PRIMUS-SIEVERT L.P.G. APPLIANCES

Starfire 630 List $£ 399$ Our Price $£ 280.00$ Comes complete and ready to use with Oxygen cylinder 630 litres (HOAL 4)
Primus 2000 propane cylinder
Oxygen regulator with gauge Propane regulator
Special Aga oxy/propane mixer
Aga welding torch with 3 swaged nozzles 3 metres fitted HP hoses with check valves Starfire 1400 List $£ 480$ Our Price $£ 335$ Comes complete and ready to use with Oxygen cylinder 1400 litres (HOAL 4) Primus 2012 propane cylinder Oxygen regulator with gauge Propane regulator
Special Aga oxy/propane mixer
Aga welding torch with 3 swaged nozzles 3 metres fitted HP hoses with check valves EACH OXY CYLINDER IS TESTED AND APPROVED BY BOC PRIOR TO DESPATCH AND COMES FITTED WITH BOC TEST RING

Firecast Torch List $£ 52.65$
Our Price $£ 36.85$
Set Contains miniature Firecrest Torch handle 1.5 metres fitted hoses and 4 angled nozzles. Can be used with either propane or acetylene set up

Sievert Appliances 25\% Off List
$f 13.00$

3485 Handle

$£ 23.00$
3487 Handle $\begin{array}{r}f 6.85 \\ \hline 55\end{array}$
3509 Neck Tube 7" $£ 6.85$
$f 5.00$
2945 Power burner $1200 \mathrm{~g} / \mathrm{h}$....... $£ 10.50$
2944 Burner $4100 \mathrm{~g} / \mathrm{h}$................. $£ 9.00$
2943 Burner $2000 \mathrm{~g} / \mathrm{h}$
2943 Burner $2000 \mathrm{~g} / \mathrm{h}$
2941 Burner $580 \mathrm{~g} / \mathrm{h}$
2940 Burner $115 \mathrm{~g} / \mathrm{h}$
3941 Pin burner $260 \mathrm{~g} / \mathrm{h} \quad £ 7.00$
. $\mathbf{2 9 0 . 0 0}$
3940 Pin burner $90 \mathrm{~g} / \mathrm{h}$
3939 Pin burner $65 \mathrm{~g} / \mathrm{h}$
3523 Cyclone burner $140 \mathrm{~g} / \mathrm{h} . . . \mathrm{£} 10.25$
3524 Cyclone burner $270 \mathrm{~g} / \mathrm{h} . . . \mathrm{f} 12.00$
3525 Cyclone burner $800 \mathrm{~g} / \mathrm{h}$.... $\boldsymbol{£ 1 5 . 4 5}$
3526 Cyclone burner $1200 \mathrm{~g} / \mathrm{h} \quad £ 17.20$
3537 Needle flame burner …......... $£ 9.45$
306001 H.P. Regulator
3084 Hose failure valve 4-bar
7015012 metres fitted hose
7012914 metre fitted hose
701622 Multi spanner
Sievert Torch set 30\% Off List
9 9UCT470 Craftsman set c/w reg 9NFT670 Jeweller's set c/w reg

3499 Sievert service box ..
$f 43.50$
£ 49.50
SILVER BRAZING ALLOYS \& FLUXES
 0.5 mm Wire
10 mm Wire
15 mm Rod

20 mm Rod
30 mm Rod
Silver Flo 55
Siver Flo 55 Cadmium Free
10 mm Wire
15 mm Rod
20 mm Rod
15 mm Rod
20 mm Rod
30 mm Rod
Argo Flo Cadmium Bearing
20 mm Rod
STEP BRAZING ALLOYS
Silver Flo 33 Cadmium Free
15 mm Rod
20 mm Rod
Silver Flo 24 (C4) Cadmium Free
15 mm Rod
20 mm Rod
Silver Flo 16 Cadmium Free
15 mm Rod
20 mm Rod
SILVER SOLDER PASTE
Easy Flo No 2 Cadmium Bearing
$10 \mathrm{cc} / 30$ gram syringe
30 cc 100 gram syringe
FLUXES
General Purpose
250 grams Easy Flo powder
500 grams Easy. Flo powder
500 grams Matutlux 100 paste
Higher Temperatures
500 grams Tenacity 4 A powd
500 grams Easy Flo paste
High Temperature/Wide Range
500 grams Tenacity 5 povider f 22.95
$£ 22.95$
$£ 12.45$ f12.45
f 10.00
£15.30 $£ 15.30$
$£ 2.15$ £ 2.55 f1 70 metre
6175 each
6315 each
66590 2690 each
$620^{\circ} \mathrm{C} \quad 660^{\circ} \mathrm{C}$ $f 180$ metre
$f 190$ each
$f 3400$ each $608^{\circ} \mathrm{C} \quad 655^{\circ} \mathrm{c}$ E3 00 each
f6 70 each $700^{\circ} \mathrm{c} \quad 740^{\circ} \mathrm{c}$
£ 165 each 6295 each
$740^{\circ} \mathrm{C} 780^{\circ} \mathrm{C}$ $f 155$ each
$f 275$ each
 Grade 25A 15S $f 792$ each
f25 85 each $550^{\circ} \mathrm{C} 800^{\circ} \mathrm{C}$ $t 520$ each
$f 844$ each
$f 1050$ each $600^{\circ} \mathrm{C} 850^{\circ} \mathrm{C}$
6985
$f 845$ each
$600^{\circ} \mathrm{C} 900^{\circ} \mathrm{C}$
c

PLEASE INCLUDE ADEQUATE POSTAGE AND PACKING
ทख3
AERONAUTICAL TRADES \& MANUFACTURING COMPANY LIMITED 6 NEW ROAD, DAGENHAM, ESSEX RM9 9YS PHONE: 015922629

OUR LATEST READER OFFER IS this superb DIY Single Phase MIG WELDER from the Sureweld Stable

This is a rugged, yet lightweight, fan cooled welding set for single phase operation. It can be used from a normal 13 amp plug and is fan cooled for extra efficiency and long service life. Weighing in at 24 kg the welder comes complete with handle and wheels to allow you to move from location to location easily.

Once you have learned the knack of using the welder you can, with confidence, tackle the welding of steel up to 5 mm thick. The standard package includes: welding torch, gas and regulator, earth lead, a coil of electrode wire, instruction book, 4 voltage settings and a wire speed regulator, in fact all you need to start welding.

However, with the accent on ease of use and safety we have added a few items to the package. First is a welding headshield, which comes absolutely FREE. The use of this as opposed to the standard handshield allows you more freedom of manoeuvere, and leaves the handshield free for use by any interested observer, reducing the risk of "arceye" as a result of trying to watch the operation whilst unshielded.

Second extra is a pair of stout leather gauntlets, selected to prevent "splash" or "spatter" from causing injury to hands or wrists. Also to protect the wrists from burning due to the ultra-violet rays produced during welding, (Safety Hint: We do recommend that you wear suitable protective clothing when welding, nylon socks and coveralls are out for this application).

Finally, we include in the package a super instructional video, MIG Welding with the DIY set. Produced by the Welding Institute, this gives expert advice on technique for setting up the machine, techniques for various types of welding, and even slow speed, vastly enlarged pictures of what is going on in the molten metal pool as the weld develops. Watching this and practising will turn novice into competent user in a very short time.
Normally a package such as this would cost you well over £325 but for you, our readers, we have put together a special money saving package, an all-in price of £239 including VAT and p\&p. (This offer applies to UK mainland only). We can quote for overseas delivery if required.
World of Model Engineering - 4, Argus House, Boundary Way, Hemel Hempstead HP2 7ST

Please Supply ROME/13 TOTAL PRICE
cheques/postal orders payable to ASP or Debit my Access/
Barclaycard \qquad Expiry

Name

Address
present their 15 th
SANDOWN PARK
Model Exhibition \& Display SATURDAY \& SUNDAY 2nd \& 3rd JUNE 1990 at the SANDOWN EXHIBITION CENTRE Racecourse, Esher, Surrey
SEE MANUFACTURERS, DISTRIBUTORS \& IMPORTERS DEMONSTRATING THEIR LATEST PRODUCTS plus

MANY OTHER NATIONAL \& INTERNATIONALLY FAMOUS DISPLAYS

Radio Control Equipment • Aircraft • Car \& Marine Engines Helicopters • IC \& Electric Cars • Boats • Yachts \& Submarines with many accessories and modellers engineering tools. A large selection of railway layouts \& Engineering Products.

A SHOW FOR ENTHUSIASTS \& FAMILY ALIKE
Advance Tickets \& ALL Enquiries to:
Mr. G. Hazelwood, 46 Wrens Avenue, Ashford,
Middlesex.
All enquiries S.A.E. for reply.

PLEASE NOTE
 THE CHANGE OF DATE

Camden manvessememeswess

FOR

Incredible books!

Discover hundreds of reasonably priced books on every aspect of engineering - in fact ALL the information you should need to be a successful model engineer. Titles include books on how to build miniature steam engines of every type, the technicalities of steam power and wooks on unusual subjects from melting metal to buiding windmils, and from electroplating to blacksmithing. Add to this reprints of technical school and correspondence course books on machine tool operation and workshop techniques, plus books on building your own precision metal working machinery for next to nothing, with only hand tools to start, PLUS specialist magazines AND books on rail, road and marine steam from around the
world and you will understand whywe believe you need to world and you will understand

Much More!

As well as offering a great selection of books, at Camden we can also offer you certain selected model engineering supplies (fittings, taps, dies, nuts, bolts etc.) PLUS drawings and castings for an exclusive range of model engineering projects including a 4" scale steam tractor, 3 marine engines, a hot air pumping engine and 3 unusual $31 / 2^{*}$ gauge locomotives. PLUS steel rail and assorted other useful itern:

Send for Your copies of our Catalogue \& Booklist!
Whether you are considering taking up model engineering, have just begun the fascinating hobby, or are an experienced model engineer, you should have copies of our Catalogue and Booklet to-hand on your reference shelf; our Model Engineering Catalogue contains illustrations and full details of all the designs we offer. Our Booklist is 32 pages crammed with interesting and tempting books, each of which is described; ALL the books we offer are carefully selected for quality of information and usefulness and for plain, old fashioned GOOD VALUE.

SEND 85p (UK) or $£ 2.00$ (Overseas Air Mail) today for your coples, and wait for temptation o come through your letter-box

MAIL ORDER (No stamp required in the U.K.) to
FREEPOST, 13 High Street, Rode, Bath BA3 6UB
Tel: 0373830151
(Callers welcome by prior appointment)

Compass House Tools SPECIALOFFERS

 HSS DRILL SETS IN METAL CASESSET -B 50 HSS Drill $\quad 1 \mathrm{~mm} 59 \mathrm{~mm} \times 01 \mathrm{~mm}-\quad \mathbf{~} 15.95$ $\begin{array}{llll}\text { SET -C } & 41 \text { HSS Drills } & 6 \mathrm{~mm}-10 \mathrm{~mm} \times 0.1 \mathrm{~mm} & \mathbf{£ 1 5 . 9 5} \\ \mathbf{E 3 2 . 9 5}\end{array}$ SET -D 29 HSS Drills $1 / 16^{\prime \prime}-1 / 2^{\prime \prime} \times 1 / 6{ }^{\prime \prime}{ }^{\prime \prime}$ SPECIAL PURCHASE SET - A 19 HSS Drills \qquad $1 \mathrm{~mm}-10 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ f6.95

CUTTING-OFF TOOLHOLDER - A \& ECLIPSE $5 / 1{ }^{5}$ " BLADE $£ 13.95$ CUTTING-OFF TOOLHOLDER - B \& ECLIPSE $1 / 2^{\prime \prime}$ BLADE £13.95 MB-25, PUSH BUTTON TYPE, MAGNETIC BASE £15.95 C.Z. UNIVERSAL METAL BENDER (List $£ 34.50$) T.O.S. 3-JAW SELF CENTRING LATHE CHUCKS $\mathbf{8 0 m m} \ldots \mathbf{m 8 . 9 5} \quad 100 \mathrm{~mm} . . \mathrm{f} 42.95 \quad 125 \mathrm{~mm} \ldots £ 47.95$

A \& M (British Made) BELT LINISHER/SANDER
Steel constructions with
machined rollers and $4^{*} \times 36^{*}$ belt. Unmotorised -Needs ${ }^{1 / 4}$ hp, Motor +V-Belt Our Price $\mathbf{£ 5 5 . 0 0}$ ($\mathrm{p} \notin \mathrm{p} £ 4.00$)
A \& M (British Made) FRETWORK MACHINE FM/15
15° Throat. For metal up to $1 / 4^{\prime \prime}$ and wood up to 1°
Supplied less motor (needs $1 / 8-1 / 4 \mathrm{hp}$)
£59.95 (p\&p £5.00)
CARBIDE TIPPED LATHE TOOL SETS $8 \mathrm{~mm} \times 8 \mathrm{~mm}$
5 PCE SET:- Bar turning,Straight finish, cranked knife LH \& Parting
£8.95
6 PCE SET:- Cranked turning, boring, end boring recessing
cranked facing \& knife
5 PCE +6 CE SET
£17.95
(p\&p £1.00)
Postage: Drill sets $£ 1.00$, Toolholders 50 p, Chucks \& Mag Base $£ 1.50$ Metal Bender $£ 3.50$ (Overseas rates available)
All prices inc. VAT.
9* \times 4* * SAE FOR FREE LIST

Compass House Tools

High Street, Rotherfield, E. Sussex TN6 3LH
Phone (0892) 852968 Showroom open Thurs to Sat

COMING SOON! COCKMAKER

Don't miss the launch issue of this great NEW magazine It's THE publication for everyone interested in building and restoring all types of clocks.
Why not send for a trial copy
Price
£2.25
inc. postage
or better still take
out a subscription NOW
PROJECTS FROM THE PAST
with many famous writers such as Claude Reeves, George Gentry and Edgar Westbury
AND FROM THE PRESENT with contributions from the leading clock makers of today.

IOCKMAKER

Will show you how to build all types of clocks with detailed constructional articles by acknowledged experts both past and present. Not only clocks but also workshop equipment with which to make them

GTCMMAKER

will be published alternate months with the first issue appearing February/March 1990. Every issue will contain constructional and historical articles workshop hints and tips plus much, much more.

IS ONLY AVAILABLE ON DIRECT SUBSCRIPTION - not through newsagents.
Make sure of your copy by subscribing now.
SUBSCRIPTION $£ 12.00$ a year (6 issues) post free.
ASP - accelerated $£ 15.00$ by ASP to USA, Canada, Europe surface post. $£ 16.00$ by ASP to rest of World

Please complete and return to:
TEE Publishing, Edwards Centre, Regent Street,
Hinckley, Leics. LE10 0BB. Tel (0455) 616419/637173
I enclose herewith Cheque/PO/Money Order/Cash for $£ . \ldots$. . Please charge my Access/Visa No. expires . for one year's subscription commerncing with the \qquad NAME

ADDRESS \qquad
\qquad

TRACY TOOLS LTD
 2 MAYORS AVENUE, DARTMOUTH, S. DEVON TQ6 9NC. Telephone: (08043) 3134

SET No.

Atam mex ${ }^{2}$

The Amolco is one of the most flexible milling attachments available to model engineers
Used as an attachment fixed to your existing modelling lathe or as a stand alone unit, the Amolco represents excellent value for money.
Can be fitted to virtually any modelling lathe
Available as stand alone unit
Bigh quality, British built construction
Modular design for maximum flexibility
Send for your FREE brochure TODAY!
Turret Engineering Ltd
Pindar Road, Hoddesdon, Hertfordshire EN11 0BZ Telephone: Hoddesdon (0992) 462362 or 461878

HUCAR
 ENGINEERING SUPPLIES

We supply plans and components for all models and are Agents for: -

M.A.P.

Plans as in Plans
Handbook 2 and 3

ARGUS BOOKS
relating to Locomotives and workshop equipment

CLERKENWELL Screws

Stuart
Stationary Engines and fittings
A.J. REEVES BIRMINGHAM LTD

Comprehensive range of their products
Send for free catalogue and price list.
Hucar Engineering Supplies
P.O. Box 89, Cambridge Park, N.S.W. 2750,

Australia. Tel: 04731 3950. Fax: 047311214

OUT NOW . . . І Іsuе з WORKSHOP MASTERS

A Challenge from the past...

DON'T MISS THE LATEST ISSUE OF THIS GREAT MAGAZINE

Go back through time with every issue to the GOLDEN YEARS of Model Engineering. Some of the best articles ever published carefully selected for you from our vast library of material.

WORKSHOP masters

IS ONLY AVAILABLE ON DIRECT SUBSCRIPTION - not through newsagents. Published alternate months. Make sure of your copy by subscribing now.
SUBSCRIPTION $\quad £ 10.00$ a year (6 issues) post free ASP - accelerated $£ 13.00$ by ASP to USA, Canada, Europe surface post. £14.00 by ASP to rest of world.

WORKSHOP masters Subscription Form

Please complete and return to:
TEE Publishing, Edwards Centre, Regent Street, Hinckley, Leics. LE10 OBB. Tel (0455) 616419/637173 I enclose herewith Cheque/PO/Money Order/Cash for £.... Please charge my Access/Visa No. expires
for one year's subscription
commencing with the
issue
NAME
ADDRESS

> Model engineering is a truly international activity; Stan Bray introduces this fourth 'Special' with a 'global' view of the hobby in all its variety

Model engineering is a hobby enjoyed throughout the world and it is one in which the interest continues to increase. I believe that I am correct in thinking that about a hundred years ago when it started to be recognised as a hobby it was prominent only in the English-speaking world and, in particular, in Great Britain. From this country it rapidly spread throughout the countries that were once part of the British Empire. We can see this by looking at the names of the older societies in those countries. They have a close resemblance to the early British ones. Many have the name of the place or district followed by the title 'Society of Model and Experimental Engineers'. This follows closely that of 'The Society of Model and Experimental Engineers', based in London and the first known society.

In the United States of America societies also came into being. The fact that these would largely be based on the operation of

Above, a delightful study of three traction engines of differing scales (3, 4 and 6 inches to the foot). Below, author's recently completed stationary steam engine model of a full-size machine by Hick and Sons of Bolton and exhibited at the 1851 London Exhibition.
miniature locomotives meant that many of their societies carried such names as 'Live Steamers'. There were differences too in the track gauges used in the United States. Whilst in Great Britain we tended to use $21 / 2,31 / 2,5$ and $7 / 4$ inches, in the USA in place of the 5 and $7 / 4$ inch gauges the use of $43 / 4$ inches and $71 / 2$ inches was more usual.

Meanwhile, on the European Continent the hobby seems to have been carried on largely by individuals rather than by the formation of societies. In recent years this has changed and there are societies in all western European countries and, in all probability, in Eastern ones as well. Certainly there are some very fine individual modellers in eastern Europe even if societies do not yet flourish. Unfortunately, whilst we in Great Britain enjoy a considerable exchange of information with the
English-speaking
world enthusiasts, we do rot enjoy the same exchange with western Europe and

Big and beautifully built and finished, this $1 / 4$ scale steam lorry simmers gently at one of the many rallies held each year by the many scores of model clubs in the UK.
virtually none with eastern Europe at all. Other parts of the world do not seem to have taken so readily to the hobby. There are model engineers in South America and some in various African states. In the far east, the hobby is very popular in Japan and to some extext China. Hong Kong has a society which consists mainly of people working there on contract. The so-called 'third world' countries seem not to have any such interests but then this is understandable as it is a hobby that reflects a great deal of what we found familiar in our younger days and so one would expect it to be more popular in countries that were industrialised earlier.

Thus the hobby has spread throughout the world, mainly in the form of the running of miniature railways but, of course, the hobby goes a lot deeper than that. Castings for stationary engines are sent all over the world, and the private

A triple expansion engine with condenser, typical of the more advanced stationary engine model.

Model boat-building of this quality can justifiably be described as 'model engineering'; level of detail makes it hard to distinguish from the real thing.
sales of small lathes suitable for model engineering are also worldwide so obviously there are far more enthusiasts than we can estimate from the number of societies. Perhaps it would be a good thing if we ceased to be so parochial and tried to establish more contact with enthusiasts elsewhere as do amateur radio enthusiasts.

The mainstay of the hobby would indeed appear to be the model steam locomotive and here there is a very wide range of interests. For many years $2^{1 / 2 i n}$ gauge models and the smaller gauges such as ' 0 ' and ' 1 ' were the most popular by far. Then slowly $31 / 2$ in gauge models also became very popular. Larger models than this took some time before the interest increased. The reason is not hard to see; locomotives need tracks on which to run unless they are to remain as showcase models and, whilst some individuals managed short up and down tracks in their gardens, the majority ran on club tracks, which were few and far between. Few people had motorcars and so locomotives were transported on trailers behind bicycles or, for the very lucky ones, in a motorcycle sidecar! Such a method of transport did not really lend itself to the carrying of large model locomotives. Now models in five inch gauge and $7 / / 4 \mathrm{in}$. gauge are all equally popular but most people have their own motorised transport.

Stationary steam engines have long been favourites with model engineers and they remain so today. The reason for their popularity may well be that such models are usually not too cumbersome for display purposes and it is possible to start with a comparitively simple model and build more complicated ones as skill at machining techniques is achieved. We therefore see in the stationary engine a whole range of models from the very simple type from commercial castings to the very complicated machinery scaled down from original engines or old salvaged drawings.

Model boat building is a very popular side of the hobby and international regattas attract entries from individuals from all over the world. Some people would not class model boating as model engineering and yet, for many years until a special magazine became available, it was catered for in Model Engineer. Quite a large number of those involved in that side of the hobby build their own power-plants to operate on either steam or oil-based fuel.

Many model aircraft enthusiasts also build their own engines and this brings them also into the scope of the hobby. We must not forget either the scale-car enthusiast

Added to all these are those modellers who like to build their own tools, make hot air engines or any other type of model, not to mention those who just enjoy messing about with machines, which makes it, to say the least, probably the hobby with the widest range of interests if not the most participants! But what of the second part of the title so boldly given nearly a hundred years ago to 'The Society of Model and EXPERIMENTAL Engineers'? Sadly we do not seem to see as many experimenters as we used to. Or do we?

The days of brilliant mechanical inventions seem to be virtually over - if, in fact, they ever existed. Today everything is developed from something new. But then this is what always happened and
 the builder of this fine example. Bugatti reveals breathtaking engine detail.
experimenting came, as a rule, in developing ideas started by others. The stories we were taught at school were never accurate. We were told (at mine and many other schools) that James Watt invented the steam engine because he watched steam lifting the lid off a kettle. This, of course, is not true at all. As a brilliant engineer in his own right he improved on what others had done before him. The story merits telling as a good way to make a child realise that steam gets power from its expansive properties; it definitely is the thing that made me realise the power behind it. We were also told that George Stephenson invented the railways. This too is not so but he deserves being remembered for the developments he carried out.

This is where the word 'experimental' comes in. Large numbers of model engineers still ponder away at home trying to find different ways of doing things. They do not intend to make discoveries which will alter the world but just to find out for themselves how and why things happen, and to develop their own ideas to improve
something originally designed by someone else. Experimenting can mean incorporating one's own ideas rather than dreaming up completely new engineering projects. That is the way industrialisation progressed and improvements, not brand new ideas, were mainly the inventions of the nineteenth century. James Watt experimented and improved on the work of others. George Stephenson did the same and so did all the great pioneers of the time.

So, many model engineers still are experimenting, and trying to find out things for themselves. This is what makes the hobby so absorbing - if one way of doing a job does not work then try another. Equally, if an operation is described on a set of instructions and you cannot do it that way, or think you can find a better way, try it! It could work and if it does then what a discovery you have made with your experimenting. One thing will lead to another and so ability improves. Then, when someone asks what your hobby is, tell them proudly, "Model and Experimental Engineer!"

And when you've made it, you can enjoy riding on it - like these two youngsters!

Left, an unusual model of a pedestal driling machine, fully working in small scale. Above, latest technology in lathes is this Unimat PC which can be operated in conjunction with a home computer.

This delightful little 'diesel' is simple to make and fun to run. Try it!

The internal combustion engine has been with us now for many years and basically has altered very little in all that time. We are all familiar with it as the motive power for our motorcar as well as knowing that it is the force used to power public transport vehicles, ships and some aircraft. In fact only in the air has it really been surpassed as a form of power.

In spite of this, we do not see many models of internal combustion engines in comparison with say, steam models. One can understand the fascination of steam, particularly where a locomotive is concerned where the miniature power can be used to haul heavy loads. Nevertheless, I often wonder why it is that so few modellers make internal combustion engines in comparison with, say, a stationary steam engine.

Diminutive diesel shown at actual size in drawing below is approximately .5 cc capacity. No special materials are required to make it and it's an ideal subject for construction on a small. lathe.

Operating a stationary steam engine, unless compressed air is used, is a far more difficult business than running a small i / c engine. With the steam model a separate boiler is required and this has to be filled with water and steam raised by spirit or gas firing, or possibly with coal. All that is needed with the i / c model is to fill the tank up with fuel and then give the engine a few turns to start it.

I believe that most modellers get somewhat anxious about making i/c engines because the tolerances involved are far tighter than those needed for steam. But if we have bought a lathe and hope to become skilled in its use then surely the thing to do is to make a model that taxes one's ability and so improve that ability! One advantage of the average i / c engine is that usually only a small lathe is needed for the construction. Also the amount of material needed is very small so, if mistakes are made, there is very little waste and the useless bits can be discarded and another one made. Certainly the tolerances involved are tight but they should not be beyond anyone - even a beginner - if care is taken.

It is quite possible to purchase a whole variety of ready-finished engines which enthusiasts use for powering model aircraft, boats, cars, etc. Someone has to make these and the equipment used is often little more than we will find in a home workshop. Perhaps the lathes, etc., do work automatically, but somebody has to set them to the required tolerance in the first place - so if the manufacturer can do it,

COMPRESSION ADJUSTING SCREW

sure that the problem will be solved with advanced electronics, but not just yet. One way round this difficulty is to use a device known as a 'glow plug', and this really means that, to explode the petrol, a hot wire is placed in the cylinder head and this, combined with the compressing of the petrol/air mixture, causes an explosion and so drives the engine. Not a bad idea but we

then the model engineer can as well!
There are several types of engine that can be made. A number of designs are available and these include multi-cylinder engines but I would suggest that those making a first attempt, unless already very competent engineers, start with a single cylinder engine. Even then there is quite a choice. We can have an engine operated on petrol. This needs a sparking plug, but making those, or indeed buying them in miniature, is no great problem. Unfortunately, to go with a spark plug we need some form of high tension electrical device in order to create a good spark. Nobody to my knowledge has yet succeeded in reducing such a device to the size we need - not because no-one has the skill but merely because there are several natural laws that need to be obeyed and these have yet be scaled down. I am quite

Another view of the crankcase after shaping.

will need a battery which will be very much over scale to make it work.

Compression ignition means putting a fuel under so much pressure that the heat generated by that pressure will explode it and so drive a piston. This is the principle that the diesel engine works on and it has the advantage for us that it needs no outside heat source to make it work. We do not use diesel fuel for such an engine in model form but a mixture of di-ethyl ether and benzine.

We can simplify the model even more by making it work on the two-stroke principle, which is frequently used for small motorcycles. For those not familiar with the system, let me explain. In a normal fourstroke engine, as the motorcar type is termed, the firing cycle is broken down into four phases. The fuel is drawn in as the piston goes down the cylinder, it is

Crankcase and flywheel; Stan starts the little engine with a pull on a string wound around.
compressed as the piston goes up and it explodes at the top of the piston stroke, and then during the fourth phase as the piston goes down again the waste gases are allowed to escape to exhaust. The cylinder then is a sealed chamber and only when a valve opens can the fuel get in or the exhaust get out. This means that the crankshaft and bearings must be separately lubricated.

In the two-stroke engine the fuel is drawn in by the piston travelling down the cylinder and is forced into the crankcase. This is a sealed unit which holds the crankshaft, connecting rod for the piston and the various bearings. As the piston starts to rise so the fuel is sucked up with it through a hole into the cylinder where it is compressed and explodes. On the way

mave Anic. E \| G | | E

The partially finished connecting rod nailed to a piece of timber to make filing to shape a straightforward operation.

BEARING 1 OFF MILD STEEL WITH BRONZF BUSH
FIT 1.5 (1/16")THICK PTFE WASHER EACH END ON
FINAL ASSEMBLY. USE LOCTITE 601 TO SECURE TO BODY

CRANKSHAFT SDIA. (3/16") MILD STEEL LENGTH :- BEARING + FLYWHEEL + DRIVE UNIT

cylinder to ensure that fuel does not escape down the sides. With full-sized engines this is taken care of by using piston rings. With the small model these are not very practical, although some modellers do make them. We must, then, rely on the fit of the piston.

The crankcase, too, must be absolutely airtight or else the fuel will not get sucked into the cylinder, and in fact might not be sucked into the crankcase in the first place. There are two possible sources of leaks. The first and obvious one is where the cover fits the crankcase. It is not difficult to deal with this by using some form of gasket. The drive or crankshaft, however which is also a possible cause of leaks cannot be dealt with in this way and so must be made an excellent fit in the first place to eliminate them.

Flywheel represents the simplest of turning operations. If built from lighter material and fitted with a propeller, the little diesel could power a small model aircraft - say about $36^{\prime \prime}$ span.

Above, the completed crankshaft.

down the exhaust gases escape through another hole, but as the piston is coming down, more fuel is being drawn in and so the whole sequence will start again.

We have an engine then which has no valves as such, these being replaced by simple holes. From the model engineer's point of view this makes it easier to construct in model form. The only problem that arises is the fact that the crankcase must be sealed to prevent loss of pressure and so we cannot easily oil the moving parts. To get over this a certain amount of oil is mixed with the fuel. Motorcyclists these days can get a special mixture for two-strokes. Not so many years back it was necessary to buy petrol and oil, put it in the tank and shake the bike about to mix the two together!

Whilst in many ways the two-stroke compression ignition engine is fairly easy to make there are certain facts that must be taken into account when making a model. The most important one is the tolerances. It has already been pointed out these must be much tighter than with a steam engine. The piston must be a good fit in the

mave ANic. E \| $G \mid \| E$

Cylinder head is finned for cool running and carries compression screw (not in place in this photograph).

CONTRA PISTON TIGHT PUSH FIT IN CYLINDER BORE

TAP INSIDE 2BA OR 4 mm

RECESS FOR COMPRESSION SCREW- SIZE OPTIONAL

PISTON 1 OFF

PISTON YOKE 1 OFF BRONZE

These fits are not as difficult to obtain as one might think and there are various ways of getting things right. The most important factor, however, is care when machining in the first place. One must not be in a hurry to finish the component. If it means traversing the tool three times as often as normal then so be it. The end result will be worthwhile. Other fits need not be quite as accurate as these two, although there is no excuse for sloppy work and, as far as possible, all bearings, etc., should be made a very good fit.

There is no need for castings when making a small model engine. Making it from solid may not be as easy as using castings but if things go wrong little is lost. Any materials can be used, but if the model is for an aircraft then some form of aluminium alloy is obviously the best bet for lightness. Where such a material is used bearing bushes must be made so that excessive wear does not take place. Brass or steel are good materials to use for many parts. The cylinder must, however, be made of steel and if possible a steel that can be hardened. Case hardening will do but bear in mind that not all mild steels will case harden. The piston too should be hardened and for both these components if the engine is only a small one the use of silver steel is worth considering. There is a school of thought that the drive or crankshaft should also be hardened. Personally I doubt if there will be any great advantage in so doing and think it is better to use mild steel with bronze bearings.

The main body of the engine will act as the crankcase. It must have a place for the crankshaft to fit into and a recess for the crank to revolve in order that the piston may go up and down. There must also be provision for the fuel to be drawn in and transferred to the cylinder. The hole that copes with the latter is known as the 'transfer passage'. It is usual to allow the fuel to travel along the passage left to clear the piston rod and this saves machining.

The cylinder needs three, or possibly four, holes at its base. One allows the fuel to be drawn into the crankshaft, the second acts as the transfer passage or port. The other is for exhaust. As the exhaust gases have a greater volume than the fuel and they need to be disposed of quickly we usually make two exhaust passages. The transfer and exhaust passages can be more or less the same height on the cylinder. The inlet is best placed a little lower.

At the top of the cylinder is a plug and this is fitted with an adjusting screw. Known as the 'contra-piston' this tight fitting component is adjusted after assembly of the engine in order to get the right compression to make it run.

There we are then, the only parts needed to make the engine are as follows:-

The fuel intake valve is basically a rudimentary carburettor.
Crankcase and cover, crankshaft, connecting or piston rod, piston, cylinder and contra-piston. We also need a cover for the cylinder to help cooling as the engine would otherwise run too hot. None of these are beyond the scope of the average amateur.

Crankcase is simply made from a piece

 of square bar.

The model shown has been made as simple as possible. Some two-stroke engines have a rotary valve to draw in the fuel but this one relies entirely on the suction created by the piston. The cylinder has three holes, two for exhaust and one to allow the fuel in. The cylinder is fitted to the crankcase with a clamping bar that is also used to secure the engine for working purposes. This clamping bar acts as a cover for the three passages in the cylinder, as well as holding the cylinder itself in position. The cylinder cover with its cooling fins which also houses the compression adjusting screw simply screws on to the cylinder.

Loss of fuel and compression through the crankshaft bearings is taken care of by a combination of good fitting and two PTFE

CYLINDER HEAD 1 OFF ALUMINIUM OR MILD STEEL
washers which, as things warm up, tighten over the shaft. The whole thing is completed with a simple flywheel and to start the engine a piece of string is wrapped round this and pulled firmly to

rotate the engine. The secret of the engine's success is a well lapped piston in the cylinder. If this is achieved, nothing should prevent the engine from running.
Cylinder and clamping bar; outer holes are for mounting engine.

